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Monte Carlo simulations have been carried out to study the effect of surface curvature on normal
grain growth. As predicted by a recent theory of kinetics of coarsening on curved surfaces, we find that
the stability properties of stationary grains are sensitive to the Gaussian curvature of the surface. In par-
ticular, it is found that on a spherical surface, the normalized grain-size distribution is not stationary in
time. In regions of positive curvature, grains that are much larger than the mean are unstable and grow
faster than the mean and engulf the entire surface. In regions of negative curvature, all stationary grains
are stable and the final configuration consists of many grains which have established a stable size. These
observations are in agreement with results of experimental studies of the growth of grains in polycrystal-

line films on curved surfaces.

PACS number(s): 82.70.Rr, 68.10.—m

I. INTRODUCTION

During the past several years, there has been a consid-
erable interest in the coarsening dynamics of two-
dimensional (2D) cellular patterns [1-3]. An example of
cellular structure includes foams, polycrystalline aggre-
gates in metals, ceramics and alloys, biological tissues,
magnetic bubbles in garnets, and monolayers of fatty
acids on water in their liquid-gas coexistence region. In
all such systems the essential mechanism of evolution is
intercellular diffusion resulting in reduction of surface en-
ergy [2,3]. However, the dynamics of coarsening of 2D
cellular patterns still remains somewhat controversial.
Despite all the theoretical and computational effort
[4-27] directed towards understanding the evolution of
statistical properties and the long-time behavior of 2D
structures, the exact solution of the model is still not
known, particularly in regard to which features are
universal and which are system specific.

One of the simplest 2D systems that exhibits all the in-
trinsic properties of more complex materials with domain
structure is a soap froth. The basic mechanism for
diffusive coarsening in foams is described by von
Neumann’s law for the rate of change of the area 4, of
an n-sided cell [4]
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where o is the surface tension and D is the diffusion con-
stant for transport through the bubble wall. This law was
originally obtained assuming that the diffusion rate of in-
compressible gas across the walls is proportional to the
pressure difference between the adjacent bubbles, and
thus to the curvature of their interfaces. The foam is as-
sumed to be an idealized, 2D system in a state of mechan-
ical equilibrium, with no Plateau borders [28] and all in-
terfaces meeting at angles of 120°. (These conditions are
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sometimes called Plateau laws.) However, it is now be-
lieved that the physics of many 2D patterns is similar and
Eq. (1) also applies to a wider class of problem including
polycrystalline aggregates in metals [5]. In this case, the
diffusion constant D should be replaced by the grain-
boundary mobility M.

Recently, a generalization of von Neumann’s law was
obtained for the coarsening of foams constrained to
curved surfaces [17,29]. Generalizing the condition for
the balance of forces, due to the pressure difference and
the surface tension, and assuming that all the edges have
constant geodesic curvature, one finds that

d4, — Do
dt 3
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Here the integral of the Gaussian curvature is over the
area of the bubble’s face S characterized by a Gaussian
curvature K (S). For a flat surface K =0 and one obtains
the standard von Neumann’s relation, Eq. (1). The addi-
tional term in Eq. (2) is small, of the order of O(F -y
where F is the total number of domains on the surface
[30]. Nevertheless, the evolution of bubbles on a surface
characterized by the Gaussian curvature K should be
very different from its planar counterpart. In particular,
if K>0, no bubble on a positively curved surface is
stable, while all stationary bubbles on a surface with
K <0 are stable [17].

A very useful method of studying a general
phenomenon of the kinetics of growth is to develop a
coarse-grained model which is not specific to the details
of any one system. Among such approaches a microscop-
ic microstructural approach in the form of the two-
dimensional Potts model has been demonstrated to be
particularly useful [24—-27,31-34]. In this model, a cellu-
lar aggregate is represented by a lattice of spins. Each
grain is characterized by an unique spin or orientation
and the interface between regions of different orientations
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corresponds to grain boundaries. The Q-state Potts-
model Hamiltonian is defined as [35]

Hy,=J 3 (1-855), (3)
{if}) o

where J is a positive constant proportional to the grain-
boundary energy unit, the sum is taken over all appropri-
ate neighbor site pairs {ij} with assigned spins (orienta-
tions) 1=S5; = Q, and §,4 is the Kronecker delta function.
For the triangular lattice the summation is carried out
over all nearest-neighbor pairs {ij} while for the square
lattice all nearest and next-nearest sites j of site / are in-
cluded [33]. The number of possible states Q is usually
taken large enough to assure that an impingement of
different domains with the same orientation is relatively
infrequent. The growth process is simulated by random
jumps of spins across the interface under constraint of
the energy-minimization principle. Dynamic evolution of
microstructure proceeds by a curvature driven grain-
boundary migration and, on an average, obeys von
Neumann’s coarsening law [31].

While the patterns formed in soap froth and polycrys-
talline aggregates are very similar, the dynamics differ in
two essential ways. Soap-froth dynamics is relatively slow
in comparison to the readjustment of the soap films, be-
ing governed by the pressure difference between neighbor
bubbles, which allows the cell wall to approach a smooth
(minimal) surface [5]. In metallic aggregates, the proba-
bilistic motion of an interface between the domain of
different orientation results in grain boundaries which are
usually far from these ideal surfaces [32,36]. A second
difference between an ideal soap froth and the polycrys-
talline aggregate is orientational anisotropy of the bound-
ary energy of the latter which may significantly affect the
coarsening kinetics [33]. Clearly, the Potts model is
closer in detail to the polycrystalline microstructures.
Nevertheless, the low-lattice-anisotropy Potts-model
simulations show an overall excellent agreement with
behavior of a real soap forth [32,33]. This apparent suc-
cess of the Potts model in describing both systems
motivated us to find an extension of the lattice-based
Potts model to study the behavior of soap froths on a
curved surface.

One method of modeling the effect of the Gaussian cur-
vature K (S) on coarsening dynamics is to introduce an
implicit dependence of the Potts Hamiltonian on K (S),
e.g., through Hy—H({K;};<;<y), where K; represents
the Gaussian curvature at the jth site of the lattice,
1=<j =< N. Moreover, an appropriate contribution to the
“flat” Potts Hamiltonian should be consistent with its to-
pological, i.e., global character [37]. By virtue of the
Gauss-Bonnet theorem [38], the integral of K over a
closed surface depends only on its genus g,
f sKdA=4m(1—g). Therefore, a reasonable class of
modified Potts Hamiltonians, H({K;}) should satisfy the
relation, in the absence of any interface (in a one-domain
state),

H({K,} )Ino interfacesocC0+C1(1_g)l+cz(1_g)2+ e
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Clearly, the simplest class of models with this property
corresponds to C; =0, i =2,3, ..., i.e., can be realized by
a linear curvature “field” term. Simulations with such a
model are presented in this paper.

An alternative method is to introduce dynamical
effects related to the Gaussian curvature indirectly, via an
appropriate lattice formulation of the standard Potts
model. Since the surface tension of the soap froth is
essentially isotropic even on a curved surface, it is natural
to seek a lattice-based formulation of the model with use
of a regular tessellation of a surface [39]. However, many
recent studies have demonstrated that the level of anisot-
ropy in a Potts Hamiltonian has an influence on the
kinetics of coarsening [33,40]. In some cases, the strong
anisotropy of the lattice can lead to pinning at low tem-
peratures and qualitative differences in the results for a
number of topological distribution functions. The study
with use of this method, applied to coarsening on a sur-
face with negative, constant curvature, i.e., pseudosphere,
is presented in Sec. V.

II. THE MODIFIED POTTS MODEL

The Hamiltonian of the modified Q-state Potts model
with a linear Gaussian curvature term can be defined by

H=H0+HK=J 2 (l_asisj)—c Z [EKjSS,-Sj ] )
{ij} i j

(5)

where the first is the same as Eq. (3) and ¢ is a constant.
Both summations in Hy are carried out over all lattice
sites and K is the local Gaussian curvature of a surface
element at site j. The fieldlike term «;=—3 ;K ,-SSj s,
represents a sum of Gaussian curvature increments over
all sites j of a domain with orientation S;=S;. Since the
local Gaussian curvature K; is inversely proportional to
the total number of sites N, Hy is an intensive variable,
i.e., Hgy < N. Indeed, if the surface is occupied by just one
grain, the total energy per site is
H

N- ek —e[Kda<(g—1),
J N

which correctly accounts for the genus of a surface. It is
worth noting that if the whole surface is occupied by just
two domains with orientations S; and S,, each site of
domain 1, 2 contributes a field term k,= él 'K,
K, =3 K, respectively. The total contribution of the
Gaussian curvature to the Hamiltonian is, therefore,
—c(N,«;+N,k,), where N; is total number of sites in
domain i. In the special case, when K;=K=const, e.g.,
for a spherical surface, the sum reduces to
—cK(N?*+N3). Generally, if there are s>2 domains
covering the surface with K =const, then
—Hg=cK(N?+N3+ --- +N2). Since

2

=N?2 ,

s

SN<

i=1

2N

i=1

on a surface of a sphere (K >0) the configuration with
the lowest value of Hg corresponds to one domain with
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sites, whereas on a surface with negative curvature, the
minimum of Hy is achieved when the configuration con-
sists of N one-site cells. Hence, the curvature part of Eq.
(5) leads to ground states which are consistent with the
dynamics described by the modified von Neumann’s
equation, Eq. (2).

It should be observed that this method of representing
dynamic effects, due to the Gaussian curvature, by a
fieldlike term requires the use of reasonably large lattices.
In particular, the area of a typical domain should be
much smaller than the inverse of the mean Gaussian cur-
vature of the grain, i.e., (A4 /LY <KL Otherwise, lo-
cal variations in K averaged over an area will not capture
the correct dynamic behavior of the froth.

The Kkinetics of the interface is simulated by the finite-
temperature Metropolis Monte Carlo method with the
Glauber excitation mechanism. After a site is selected at
random, a new orientation is randomly chosen, and the
change in energy AE=H; —H, associated with this
change is evaluated. The reorientation is accepted with
probability min{1;exp(—AE /kyzT)}. In particular, if a
site / of a domain a attempts to change its orientation to
that of an adjacent domain f3, then

—AE=—AEq+clk,HK(Ng+1)]—clkgt K (Np—1)],
(©)

where AE| is the change in energy due to H,, Eq. (3).
For a spherical surface K =const, the energy cost of flip-
ping a spin from orientation a to B is
AE=AE;,—2cK(N,—Ng). Therefore, the rate change
in the area of a domain « includes a term which is con-
sistent with the Gaussian curvature term in the modified
von Neumann’s law, Eq. (3). Moreover, the probability
of a spin flip S;—S, of an interface site belonging to a
domain 3 is normalized by a factor which assures that, if
domains a and B are of comparable size, N, =N p» the
system is in a state of unstable equilibrium.

In the present study, we kept the maximum number of
accessible domain orientations constant, Q =48, and kept
a separate count of all grains. Because each grain does
not have a unique orientation, this occasionally leads to
impingement of grains with the same orientation. Every
20-100 Monte Carlo steps per site (MCS), we checked
whether such an impingement had occurred. If so, then a
new grain of size equal to the sum of adjacent grains with
the same orientation was identified, with the appropriate
field term for the new grain. While this impingement
sometimes leads to abrupt changes in the local grain size,
it did not significantly influence our final results [41]. For
both cases of spherical and toroidal surfaces, typically
five different Monte Carlo runs with up to 1.0X 10° MCS
were used to obtain averages. Initial configurations were
obtained from a completely disordered state by normal
growth [24]. This yielded microstructures with an initial
mean grain size of A4,=14, with a standard deviation of
10. Simulations were performed at T=0.171J, which is
about 0.231T2, where T2 is the critical temperature for
the triangular lattice [42]. Since both lattices were rela-
tively large, N >4 X 10°, and their local symmetry almost
everywhere was that of a triangular lattice, one can ex-

P. PECZAK, GARY S. GREST, AND DOV LEVINE 48

pect that in both cases the transition temperatures were
not too far from T2 (Ref. [43]). It is worth noting that
the finite-temperature simulations were necessary in or-
der to overcome local frustration of the driving force
which can pin the growth at T=0 (Ref. [40]). In the fol-
lowing section we give a detailed account of finite-
temperature quenching studies for the modified Potts
model on a sphere and torus.

III. RESULTS FOR SPHERICAL SURFACE

The simplest system with only a constant, positive
Gaussian curvature is the surface of a sphere. In this
case we used a mesh obtained by a spherical projection of
triangularly tessellated icosahedron [44]. The starting
point of this construction is provided by the 12 vertices of
an icosahedron. The coordinates of these vertices are
taken as (0,%1,%7), (+1,47,0) and (£7,0,£1) where 7
is the Golden ratio (14+Vv'5)/2. Each of 20 faces of the
icosahedron is then tessellated with a triangular grid with
10(n —1)(n —2) interior sites, where n is the number of
times the grid cuts the side of a triangular face. For
n =65, the total number of sites of the mesh is
N=12+30(n —1)+10(n —1)(n —2)=42252. The grid
points are then spherically projected into the sphere cen-
tered at (0,0,0). For nearest-neighbor interactions all sites
are sixfold coordinated, except for the 12 original vertices
of the icosahedron, which have five nearest neighbors.
(This produces a lattice whose bonds are in an interval
between 1.388X 1072 and 2.037X 1072 rad for n=65.)
The Gaussian curvature of a sphere with radius R is
given by K=R ~%. We investigated grain growth on a
surface of a unit sphere, K =1, for two values of stiffness
constant, ¢=0.002 and 0.0002. This approach is
equivalent to studying grain growth on spheres with the
same properties but with different sizes, where smaller
value of ¢ corresponds to larger value of R.

Figure 1 shows the time dependence of the mean grain
size A,, for five different runs for the two values of c.
Clearly, a non-power-law growth behavior is observed.
Following some initial curvature, all curves reach a local
maximum, then decline, and finally rise steeply to reach
its maximum attainable value N. The final state of mi-
crostructure consists of just one “singular” grain. Using
the same sequence of random numbers it is possible to re-
peat a run and to monitor the time evolution of the
domain that ultimately engulfed entire surface.

In Figs. 2(a) and 2(b) we present results for mean grain
size { 4,, ) the grain size of the singular grain { 4,) and
rate of change of “‘singular” grain size {d 4, /dt ) for mi-
crostructures corresponding to the two spherical surfaces
and averaged over five runs. (The discontinuous ‘“‘steps”
seen in the plots of 4, vs ¢ are due to the accounting pro-
cedure described at the end of Sec. II.) Clearly, in the
early stages of coarsening the absolute difference between
(A, and  4,,) is less than one order of magnitude, al-
though it does slowly increase with ¢. In the same regime
the rate of increase in { 4,) is approximately constant.
At a critical value of t*, when ( 4,,) reaches a local
maximum, the singular grain rapidly increases in size so
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FIG. 1. Log-log plot of mean grain size A4,, vs time for a
spherical surface with stiffness constant ¢=0.002 and 0.0002
obtained for five different Monte Carlo runs. The maximal
value of 4,,, N=42252, is denoted by arrows.

that {(d 4, /dt) changes by almost two orders of magni-
tude. Only at very late stages of coarsening when singu-
lar grains cover most of the surface does the rate of ex-
pansion decrease to the initial level. The qualitative
change in coarsening that occurs at t* occurred when the
value of the Gaussian curvature field of grain 1 of size
A,(t*) is larger than the corresponding value of the sur-
rounding matrix grains of size 4,,(t*) by about E*=2J
per site. This can be understood by noting that mesh of
sites representing the spherical surface is almost every-
where equivalent to a triangular lattice. It has been
demonstrated elsewhere [45], that for the triangular lat-
tice with nearest-neighbor interaction a grain with
“stored” energy advantage of E*=2J per site will grow
homogeneously into the surrounding matrix. The condi-
tion can be expressed as cAA(t*)=2, where
AA(t*)=A,(t*) — A,,(t*) or, since A,(t*)>>A4,,(t*),
as A,(t*)=2/c. For ¢=0.002 and ¢ =0.0002, corre-
sponding values of ¢*, 720 and 5760 MCS, are indeed
consistent with local maxima of { 4,,). It is worth not-
ing that the decease in { 4,,) for t >¢* is due to an in-
crease in number of few-sided grains that are created dur-
ing rapid advancement of singular grain boundary into
the matrix. This results in fluctuations of the grain-
boundary profile which have the same time scale for both
transverse and longitudinal directions and occasionally
lead to creation of few-sided grains in vicinity of the
grain boundary. Naturally, this effect does not occur in
soap froths, where the characteristic time of longitudinal
fluctuations, or “warping,” is much smaller than the time
scale of transverse fluctuations, which is related to fluc-
tuations in gas pressure in bubbles. However, this effect
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FIG. 2. Logarithmic plot of mean grain size { 4,, ), “singu-
lar” grain size { 4,), and speed of increase of abnormal grain
size {d A, /dt) vs time, averaged cover five runs, for a spherical
surface with stiffness constant (a) ¢ =0.002 and (b) ¢ =0.0002.

does not significantly change the long-time behavior of
grain ensembles and can be safely ignored in the present
study.

The above observations are confirmed by studying the
grain-size distributions for corresponding microstruc-
tures. Figures 3(a)-(3f) show double-logarithmic dia-
grams of relative frequency of grains as a function of
their relative size ( 4 ) /{ 4,,) for ¢ =0.002. Clearly the
initial distribution of grain sizes, Fig. 3(a), can be well ap-
proximated by a parabola, i.e., it can be represented by a
normal distribution with a second moment u less than 1,
on a semilogarithmic plot [2,3]. Deviations from this dis-
tribution are visible at small values of grain size and have
its origin in the above described thermal fluctuations. At
later times 0 <t <t*, Figs. 3(b)-3(c), the second moment
slightly increases, but the distribution preserves its nor-
mal character. At these times the singular grain remains
comparable in size with other large grains that are typi-
cally 10 times larger than A4,,. Only when the singular
grain reaches the critical size necessary for its homogene-
ous expansion does the distribution change qualitatively
in character, Figs. 3(d)-3(e). It then becomes multimodal,
i.e., it contains numerous small grains and very few
grains with a much larger than average grain size. Also,
the relative number of grains of intermediate size de-
creases with time, Fig. 3(f).

Additional insight into the nature of grain coarsening
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FIG. 3. Logarithmic plot of distribution of grain sizes at sur-
face with ¢ =0.002 measured at t =0, 300, 800, 1300, 1800, and
3300 MCS and averaged over five runs.

on a spherical surface may be gained by studying the
behavior of a microstructure consisting of one, large
grain with S=1 and introduced into a matrix built of
much smaller grains with orientations of S=2,3,...,48.
Figure 4 shows the results for individual runs when a
single-grain “cap’ with sizes between 188==2.79 X 103N
and 526=1.24 X 102N were placed in a matrix of grains
with 4,,(t =0)=14%10. Plots of A vs t have a charac-
teristic sigmodial shape, quite similar to those shown in
Fig. 2. Also, the time evolution of “caps” with large ini-
tial sizes are markedly flattened. Interestingly, the value
of the time difference At=tf——t*, where ty is the total
time of coarsening, is almost independent of the “cap’s”
size. For A4,=150, 230, and 398, Ar is 2880(50),
2880(50), and 2850(20) MCS, respectively. (The figures in
parentheses indicate the level of error associated with the
quoted values.) Calculating the same quantity for
¢=0.002 yields for A.,=280, 398, and 526, At of
2980(80), 2850(80), and 2780(70) MCS, respectively.
Also, the result suggests that while At is only weakly
dependent on ¢, the time evolution of a “cap” grain is
sensitive to the stiffness constant. Figure 5 shows qualita-
tively different behavior of cap grains with
A =230=5.44X 103N, obtained in five different
simulations for ¢ =0.002 and 0.0002. It is seen that on a
sphere with ¢=0.0002, in all five runs, caps became
singular grains engulfing the entire surface. Similar runs
carried out on a sphere with ¢ =0.0002 resulted in only
one case when the cap engulfed the surface. In all other
runs, the cap grew in a similar fashion but finally col-
lapsed, apparently consumed by another singular grain.
This difference can be explained by noting that a small
value of stiffness constant ¢ leads to coarsening in which a
cap reaches an advantage over the matrix grains, in terms
of Gaussian curvature energy, at relatively late times
t*=pt,, p=1. Until then, coarsening occurs via quasi-
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FIG. 4. Log-log plot of a cap size A4, vs time for a spherical
surface with ¢ =0.002 and 0.0002 obtained for three runs with
caps of initial sizes of 118, 230, 398 and 230, 398, 526, respec-
tively.

normal growth, which leads to a fast growth of small
grains and a comparatively slow increase in the size of
large grains. As a result, at time ¢*, the microstructure
consists of more than one grain of a “subcritical” size,
A= A*, each of which may finally become a singular
grain. This scenario agrees with the results of simula-
tions of abnormal grain growth in a two-dimensional ma-
trix where the driving force is provided solely by curva-
ture [46]. Srolovitz, Grest, and Anderson found that in
this case the normal grain-size distribution is very robust
and resistant to perturbations. In particular, the power-
law growth for a cap grain which is much larger than all
its neighbors, is never observed. The results show that

10°

10' . , L
10’ 10° 10° 10*
TIME (MCS)

FIG. 5. Log-log plot of a cap size 4, versus time for a spher-
ical surface with ¢=0.002 and 0.0002 obtained for five runs
with the same initial size of the cap, 4,(0)=230.
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the time-averaged growth rate is significantly lower than
the mean growth rate for the remaining microstructure
and that it decreases as the initial 4, is made larger. The
difference in size between cap grain and the mean grain
size deceases with time until it is absorbed into the nor-
mal grain-size distribution. These observations corre-
spond to results found in the present model in the limit
c¢—0.

The above reasoning implies that, for each value of the
stiffness constant, there exists a critical size 4*= A4 *(c)
such that a cap with 4 > 4* will always become a singu-
lar grain. Moreover, 4*= A4*(c) is expected to be a de-
creasing function of c. In order to investigate this rela-
tion, runs were carried out with different size caps. For
¢=0.002, in all five runs the cap was able to become a
singular grain if its size was 230 or larger, although in
some cases caps as small as 118 could engulf the whole
surface. For ¢ =0.0002, the cap had to be at least 526
=1.24X10"2N to consume the surface although, oc-
casionally, caps with A4, =230 managed to engulf the
surface. Indeed, the critical value of an ‘‘abnormal”
grain A* is a decreasing function of the stiffness con-
stant. A more precise determination of the dependence
was difficult due to relatively large statistical scatter in
measurements of A*. An approximate form of this
dependence may be obtained in a manner similar to that
carried out for an “abnormal” grain and leads to the ex-
pression 4*= A(¢t*)=2¢ .

Clearly, the observed behavior of the grain ensemble
on the surface with positive Gaussian curvature resem-
bles abnormal (or secondary) growth which is observed in
polycrystals upon annealing and has been extensively
studied in the past [46—-49]. It was originally thought
that grains with particular crystallographic orientations
may have lower surface energies or higher mobilities and,
hence, are able to acquire a size advantage over all other
grains. Moreover, a grain having a large initial size ad-
vantage was not observed to be a sufficient condition for
abnormal grain growth [46,49]. This is because the
modifications introduced in these models had local char-
acter. The present model recognizes that Gaussian cur-
vature is a global quantity and, hence, must be modeled
differently, resulting in qualitatively different kinetics. In
contrast to local abnormal grain-growth models, a grain
with a sufficient size advantage will grow exponentially
fast into the matrix. On a curve surface, as shown here,
one does not need to favor any particular orientation to
result in an ensemble of grains which become unstable
against small perturbations, making it qualitatively
different from previous, local models.

IV. RESULTS FOR THE TOROIDAL SURFACE

In this study a 200X200 triangular lattice with a
periodic boundary condition was used to represent the
surface of a torus. A torus was chosen since it is the sim-
plest surface with a varying Gaussian curvature. The
saddlelike shape of the ““interior” of a torus is character-
ized by its negative curvature, while the curvature of the
exterior is positive, Fig. 6(a). It is worth noting that al-
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though a triangular lattice with a periodic boundary con-
dition is topologically equivalent to a toroidal surface, the
corresponding Potts model, Eq. (3), describes domain
growth very well on a flat surface, suggesting that lattice
connectivity alone does not ensure the correct dynamic
behavior on a curved surface. The Gaussian curvature of
a torus’s surface can be found in terms of the coefficients
of the first and second Gauss differential forms [50]. In
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-0.002}" () 7 (3)
(3) 2
-0.003 L . ) .
1 50 100 150 200

row number

FIG. 6. (a) A schematic representation of a torus with princi-
pal radii Dy, and D. The +, 0, and — symbols depict regions of
toroidal surface with positive, zero, and negative values of
Gaussian curvature, respectively. (b) A schematic representa-
tion of the torus via a triangular lattice. The table on the left
shows schematically values of angle ¢ and Gaussian curvature
K corresponding to different lattice rows. (c) Gaussian curva-
ture K vs row number for ¢ =0.02 and three values of principal
radii ratio Dy, /D =2, 7, and 10.
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the case when the equation of a surface is given explicitly
by z=f(x,y), the Gaussian curvature K is given by

— Uxx Uyy - U;%y

) (7a)
Vix Vyy—VJ%y
where
Upp=f g1+ F2HFD72,
Vapg=8agtfafp > (7b)
GE%, fag= d‘iz‘j;ﬁ (a,B=x,y) ,

and 8,5 is the Kronecker delta. If the equation of the
torus is given as D?=z2+[D,—(x%+y?)!/2}?, where D,
D, are, respectively, the internal and external radii of a
torus, see Fig. 6(a), then Egs. (7a) and (7b) lead to the
Gaussian curvature at a point on the surface

K:%—COSL’ (8)
D Dy
D cos¢

where ¢ is the angle between the vector t =[x,y,0] lying
in the plane OXY and a normal vector to the surface of
the torus at a point with the Cartesian coordinates
(x,y,z). From this formula it is easy to see that the
Gaussian curvature retains the cylindrical symmetry of a
surface, and is positive on the outside of the torus,
—(7/2)<¢ <(m/2), and negative on the inside of a
torus, (7/2)<¢ <(3w/2), see Fig. 6(b). Moreover, in-
tegrating over the entire torus surface, the Gaussian cur-
vature vanishes. We investigated grain growth on a
toroidal surface with stiffness constants ¢=0.02 and
D =1 for three values of Dy/D=2, 7, and 10. In Fig.
6(c) we present plots of K for row numbers 1-200 where
row no. 1 corresponds to a line of largest negative curva-
ture, i.e., the inner equator at the torus. It is important
to note that representing the toroidal surface by an L XL
triangular lattice introduces distortions so that the sites
in a saddlelike region have smaller Voronoi cells (i.e.,
one-site grains on a dual lattice) than sites in the region
with maximal values of K. In principle, this effect should
be included in the model by assigning each lattice site a
value of Gaussian curvature energy weighted by relative
size of its Voronoi cell so that the sum of all curvature
energies over N lattice sites would correctly yield zero.
In order to simplify our calculations we did not consider
these correction factors, which are seen, in Fig. 6(c), to be
small for tori with D, /D =17.

Figures 7(a) and 7(b) and 8(a) and 8(b) show snapshots
of microstructures, presented here as flat meshes, corre-
sponding to tori with D,/D =2 and 10, respectively.
Both initial configurations, Fig. 7(a), are uniform. How-
ever, very soon one begins to see qualitatively different
behavior in the two regions. The central section, corre-
sponding to K >0, coarsened much faster than the lower
and upper regions characterized by K <0. The inhomo-
geneity advances much faster on the strongly curved
toroidal surface with Dy/D =2 than for D,/D =10,
Figs. 7(a) and 8(a). In both cases, the outside of the torus,
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represented by lattice rows between 50 and 150, rapidly
evolved toward a few-grain configuration and ultimately
to just a single grain, Figs. 7(b) and 8(b). It is worth not-
ing that at the intermediate coarsening stage, boundaries
of a few large grains occupying regions with K >0 be-
came rough and are decorated with many few-sided
grains, e.g., configurations at t =3800 and 5800 MCS in
Fig. 7(b) and at t =13 800 MCS in Fig. 8(b). This event is
reminiscence of coarsening at spherical surfaces at times
t > t*, consistent with the fact that in both cases coarsen-
ing occurs in positively curved regions of the surface.
Evolution of grains in the saddlelike regions of the lattice
with negative curvature, led to stable-size grains which,
in the asymptotic regime, are equiaxed with almost-
hexagonal shapes. For D,/D =10, grains in this region
reach a relatively large size. They are also larger in re-
gions near K =0 then in regions characterized by large
values of |K|. This is clearly visible for a mesh with
D,/D=10.

The above observations can be made more quantitative

e tg’ ]

FIG. 7. The time evolution of a microstructure on a toroidal
surface with Dy /D =2 and stiffness constant ¢ =0.02 measured
at ¢ =0, 600, 1400, 2800, 3800, 4800, 5800, and 9800 MCS.
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by considering the time evolution of A,, the mean size of
a grain occupying lattice region in vicintiy of rth row,
defined as 4,=(1/L)3F_,4,(i) wher 4,(i) is size of a
grain with one of its sites at column i and row r. Here,
L =200. In Figs. 9(a) and 9(b) we display semilog plots of
time dependence of ( 4,) averaged over five different
runs, for several Monte Carlo time steps. It is seen that
the fast growth of grains at the outside of a torus is uni-
form throughout the region of positive curvature. It is
important to observe that the ‘“abnormal” grain covers
not only the whole outside of torus but also the two adja-
cent regions with K <0, but small in magnitude. The
reason for this intrusion can be understood by consider-
ing what happens when site i of grain a of N, sites, in the
vicinity of the K =0 boundary, is next to an abnormally
large grain 8 of Ng sites (N, <<Ng). If site i attempts to
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FIG. 8. The time evolution of a microstructure on a toroidal
surface with D,/D =10 and stiffness constant ¢ =0.02 mea-
sured at ¢ = 1800, 2800, 4800, 7800, 11 800, 13 800, 16 800, and
69 800 MCS. The initial configuration, at ¢t =0, is the same as in
Fig. 7.
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change its orientation to that of grain 3, simple analysis
shows that the energy cost —8H to reorientation of S; is
—O8H =~ —c(kg+K;Npg). Since kg, the energy field of Bth
grain, can be much larger than the energy term of ath
grain and the abnormal grains may grow into regions of
K <0, the flip will be facilitated at sites with K; <0 if
K,|<~2 ~%, 9)
Ng
where €=(1/f,)3;K; is the average value of Gaussian
curvature energy in an abnormally large grain which oc-
cupies the f, =(N,/N)=0.5 fraction of all lattice sites.
The quantity f, is an increasing function of D, /D as can
be seen by solving a continuous form of Eq. (9) which is
equivalent to the inequality |¢| < ¢, where ¢, is given by

(10)

Here, we have taken D =1. It is easy to see that ¢,(D,) is
an increasing function of D, and that for D,>>1, Eq.
(10) reduces to —¢,=tand, where a solution is
¢,=2.02875. .. . Since ¢, =mw[(2r,/L)—1]=7f,,
where r, is corresponding lattice row number the max-

D,/D

4800

100 150 200
r
FIG. 9 Semilogarithmic plot of { 4, ), mean size of a grain
localized in the vicinity of an rth row of a lattice representing
surface of torus with ¢=0.02 and the principal radii ratio (a)
Dy/D=2 and (b) D,/D =10, obtained for times between 300
and 99 800 MCS, averaged over five Monte Carlo runs.

50
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imum value of ¢,(D,) is ¢,=0.64577... . Moreover,
for Dy=2, 7, 10 the value of ¢,(D) found from Eq. (10)
is 0.5980, 0.6279, and 0.6328, respectively. These values
are only slightly smaller than the corresponding values
found in our simulations: $,(2)=0.6050(1),
¢,(7)=0.6381(7), ¢,(10)=0.6460(6). The small
differences between these values is most probably due to
approximations made in derivation of Eq. (9) and to the
finite value of T which facilitates site reorientations to en-
ergetically unfavorable orientations. The most interest-
ing result of the above analysis is the observaton that on
any toruslike surface the abnormally large grain will have
a relative size larger than the expected value of 0.5. In
particular, on the surface of only slightly bent cylinder,
where D, /D >>1, a characteristic bimodal distribution of
grain sizes will develop with abnormal grain covering
¢,=0.64577 of the entire surface. However, testing this
prediction may be difficult since for a given microstruc-
ture the critical grain size 4 * depends on the constant c.
If ¢ is very small, the surface may be too small to exhibit
the expected behavior and only quasinormal grain growth
will be observed.

The above conclusion may explain difficulties in ob-
taining reproducible results encountered by researchers
investigating grain growth in thin polycrystalline layers
on curves substrates. Recently Levin, Avron, and Brok-
man [29] reported preliminary experimental observations
on grain morphology in acoiled supported thick layers of
Pb-0.2 wt % Sb. Metallurgical inspection revealed the
presence of a bimodal grain size pattern, similar to that
found here at the toroidal surface but the researchers
were unable to reproduce the observations in other sys-
tems. It is conceivable that the unique result was not due
to the Gaussian curvature but other mechanisms, e.g.
drag effects due to impurities [29]. It is possible, howev-
er, that small value of the Gaussian curvature contribut-
ed to reported difficulties.

Figures 9(a) and 9(b) show also that stable microstruc-
ture that is found inside of torus after simulation is
characterized by a mean grain size (A,) that is, as ex-
pected, an increasing function of D, and an increasing
function of parameter |¢|. However, the evolution of
grains in negatively curved regions of the torus is rela-
tively slow and even after 10° MCS there is an evidence of

10°%
AaV
102}
10!
10° 10° 10° 10° 10°
TIME (MCS)

FIG. 10. Logarithmic plot of mean grain size 4,, vs time ob-
tained for five runs for a torus with the principal radii ratio
Dy,/D =2 and 10.
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10" 10? 10° 10* 10°
MC TIME

FIG. 11. Logarithmic plot of mean grain size { 4,,) vs time
obtained from five runs at T=0.231T2 and surfaces with the
principal radii ratio D, /D =2, 7, and 10. Also shown is a simi-
lar plot obtained from five runs at 7=0 and D,/D =10.

a slight increase in grain size. This can be better seen
from Fig. 10 which present time evolution of average
grain size for D,/D =2 and 10, respectively, for five
Monte Carlo runs. A slight dip in these curves at times
between 3X 103 and 2X 10° MCS correspond to a rapid
increase in the number of few-sided grains that occured
at t=t*. In Figure 11 we present the time evolution of
(A4,,) averaged over all configurations. Also shown is
the behavior of { 4,,) for D, /D =10 where site reorien-
tation to energetically unfavorable configurations is
suppressed, i.e., for T'=0. It is found in this case that bi-
modal grain-size distribution consists of the ensemble of
very small grains, with sizes typically one order of magni-
tude smaller than comparable sizes of grains obtained in
simulations for T'>0. This is clearly due to the lack of
thermal fluctuation which can overcome local energy
minima of metastable states.

V. SIMULATIONS ON A PSEUDOSPHERE

Another approach to the simulation of dynamical
effects due to Gaussian curvature is to study the standard
Potts model on an isotropic lattice of appropriate symme-
try. For a surface of constant curvature this can be
achieved by finding its regular tessellation. A regular
tessellation is a covering of the entire plane by nonover-
lapping, regular polygons meeting only along complete
edges, or at vertices [39]. All polygons in any one tessel-
lation must have the same number of edges. It is easy to
show that a regular tessellation of the plane with g regu-
lar p-sided polygons (p-gons) meeting at each vertex (and
denoted by {p,q,}) has the property [39]

(p—2)1—2)=4, (an

where the inequalty and equality signs correspond to the
Euclidean (R?) and hyperbolic planes, respectively. It
follows, there are just three regular tessellations of the R?
plane, namely {4,4}, {6,3}, and {3,6}. However, there is
an infinite number of possible regular tessellations of the
hyperbolic plane. The hyperbolic plane is a surface em-
bedded in a space with a Minkowski (hyperbolic) metric.
(In contrast to the surface of a positive Gaussian curva-
ture, which can be embedded in a three-dimensional Eu-
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clidean space, a global embedding is prohibited for sur-
faces of negative curvature [51].) It follows, that for a
surface of a constant, negative Gaussian curvature (pseu-
dosphere) there is an infinite number of regular tessella-
tions which can be used to formulate an appropriate
Potts-model Hamiltonian.

In this study, we constructed an octagonal {8,8} tessel-
lation of a pseudosphere, which in the following will be
represented by the Poincaré disk model [52]. The start-
ing point of the construction was to select the regular oc-
tagon, having vertex angles 27 /8 and area 41, as a funda-
mental domain. The group of isometries (displacements)
of the pseudosphere is the ortochronous Lorenz group
and its discrete subgroup G can be used to create identi-
cal replicas of a fundamental domain which tessellate the
pseudosphere. The fundamental displacements are pro-
duced by the four special boosts g, g1, &5, &3, and their
inverses that exchange opposite sides of a fundamental
domain [52]. Explicitly,

B 1+v2 WtV |
&7 le-wmovaiv:  14va [ ITOB23
(12)

where i =V —1. An element G’ of non-Abelian subgroup
G is obtained by successive application of the g; and g j_l,

iey G=Tla=i 8 8a=80:80 +81,&1 s+ - -
to generate a list of vertices used to build the lattice we
implemented an alternative procedure where all elements
{G"r=0,1,...,6} of the subgroup G were applied to a
fundamental vertex O(0,0). This method utilizes the fact
that the octagonal lattice is self-dual. The procedure
gave a lattice with Ng=155577 points most of which,
however, were boundary sites with just one nearest-
neighbor (NN) site, see Fig. 12. Only 22289 of all sites
had 8 neighbors, whereas 336 were twofold coordinted.
Unfortunately, we were unable to find an easy way to im-
plement the periodic boundary condition and to close the
lattice on itself. In order to alleviate the influence of the
boundary sites we pruned the lattice of all “dangling”
bonds. This procedure left less than 2% (2289) of N
sites, which formed a noncompact network of 392 con-
nected octagons. Only the eight central octagons adja-

In order
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FIG. 12. The octagonal network obtained on the pseudo-
sphere by successive application of fundamental boosts go, &1,
g2, g3 and their inverses to (a) a fundamental domain and (b) a

fundamental vertex (see the text). A tessellation is shown in the
Poincaré disc (compare Ref. [52]).
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cent to 0(0,0) had all eight nearest-neighbor octagons.
The remaining octagons formed a fractallike pattern
decorating the central rosette. This can be checked by
analyzing the connectivity of octagonal network that in-
cluded 65 sites with 8 NN, 392 sites with 3 NN, and 1832
sites with 2 NN. The lattice construction was carried out
using a simple distance checking algorithm and took
about 40 h of CPU on a HP 9000/750 workstation. Since
the time needed to create the lattice using the subgroup
{G"} grows like 7, we did not attempt to create a lattice
corresponding to r =7 or larger.

The kinetics of the grain-boundary motion was simu-
lated by the finite-temperature Metropolis Monte Carlo
method with the Glauber excitation mechanism, de-
scribed in Sec. II. Simulations started from a completely
disordered state and were quenched to 7'=0, 0.145J,
0.193J, and 0.217J, which is about 0, 0.37,°, 0.4T,,
0.45T,, and 0.60T,° respectively. (7. is the critical
temperture for an infinite lattice [53].) Figure 13 shows
the time dependence of the mean grain size averaged over
five different runs on an octagonal lattice with 2289 sites.
Here, a distinctively non-power-law growth behavior is
observed. Following some initial curvature all curves
reach, at T'=2500 MCS its maximum A4, (T) whichis a
decreasing function of temperature. For all tempera-
tures, however, A4,, <57, the number of sites in an
eight-octagonal rosette. Similar simulations carried out
with use of a lattice with all 155 557 sites yielded micros-
tructures with almost all sites forming one and two-site
domains. This effet is ascribed to the influence of lattice
boundary sites.

The observed saturation of grain size cannot be attri-
buted solely to the influence of the Gaussian curvature of
the tiled surface or to the edge effets. It turns out that
the grain growth on an octagonal lattice is inherently
prone to pinning due to topology of the lattice itself.
This can be explained by investigating the behavior of tri-
ple vertices on the lattice at T=0. It is known [54] that
on a triangular lattice with NN interaction, in the ab-
sence of thermal fluctuations, pinning does not occur
despite the fact that vertices V,,,, where three grains
meet at angles of 120°, cannot move, Fig. 14(a). It implies
that the population of vertices on a triangular lattice can-

2
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100 . . 1
10° 10° 10
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FIG. 13. Log-log plot of mean grain size { 4,,) vs time ob-
tained from five runs at T=0, 0.37.°, 0.4 T.°, 0.45T;*, and
0.6T.° and the octagonal lattice with 2289 sites.
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FIG. 14. A schematic representation of triple vertices on the
triangular, (a) and (b), and octagonal (c) lattice. The dotted line
delineates grain boundaries, the letters 4 —H denote sites of an
elementary plaquette dual to a vertex, and the numbers corre-
spond to their remaining NN. (a) Each spin on one of three
sites representing a V,,, vertex is pinned by three like spins on
NN sites. (b) Vertices V,;3 or V3, are able to move since the
energy cost of flipping a spin at site B is zero. (c) None of the
spins at sites 4, H, G, E, D, B can flip due to presence of like
spins at seven of their NN sites.

not include only V,,, vertices. This observation is direct-
ly related to the fact that hexagonal grains of different
sizes cannot tile a flat surface [40,55]. (For this to be
true, a necessary condition is that the equal-size grains
that meet at a vertex must fit into a larger grain of the
same shape.) It follows that a microstructure on a tri-
angular lattice must also include other triple vertices:
Vi3 and V3,;, where three grains meet at angles of 60°,
120° and 180°. These vertices, however, are mobile [Fig.
14(b)] and promote coarsening. Similar analysis carried
out for the octagonal lattice is more difficult due to a
larger number of possible nontrivial triple vertices.
Clearly, the energy minimizing grain shape on the lattice
is an octagon. This results in coarsened microstructures
similar to that shown in Fig. 14(c), with grains having
most of their vertex sites connectd to six interior sites. It
contrast to a triangular lattice, all these vertices,
Vi (i +j +k=8, ijk >0), are pinned in the absence of
thermal fluctuations. (We also observe in passing that on
the octagonal lattice there is no pinning of ledges.) It fol-
lows that in order to avoid the pinning and to be able to
investigate the dynamical effects on the octagonal lattice
due solely to the Gaussian curvature it is necessary to in-
clude the next-nearest neighbors (NNN) or, possibly,
even further range of interactions in the Potts-model
Hamiltonian. Due to a small size and noncompact shape
of the lattice availabe to us, we did not pursue the study
in this direction.

It is worth noting that octagonal domains of different
sizes cannot tile the pseudosphere. A justification of this
conjecture can be made by considering a rosette built of
eight octagons of equal size meeting at a vertex O(0,0),
Fig. 12. Let OV be a common edge of two adjacent octa-
gons, OVA, A,A;A,AsAs and OVB,B,B,B,BsB,.
The angle between edges VA4 and VBg is 2X2w/8,
which is larger than 27 /8 but smaller than 7. As a re-
sult, the rosette cannot be covered by a larger octagon,
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which points to correctness of the conjecture. This result
is important, since it implies a lack of a one-to-one
correspondence between the pinning of grain growth and
existence of a frozen state consisting of all domains in lo-
cal equilibrium. This hypothesis, postulated recently
[56,57] for two-dimensional domain growth simulated by
the Monte Carlo, method apparently holds only for
grains covering flat surfaces. The local equilibrium
shapes, here octagons, cannot tile the hyperbolic surface.
Although the thermodynamic force of curvture can prop-
agate kinks along the domain walls, it cannot move them
through vertices between adjacent domains. This leaves
all the domains in the state of metastable equilibrium,
i.e., curvature-driven growth becomes frustrated.

The zero-temperature equilibrium shapes change at
sufficiently high temperatures approaching the shape that
minimizes the perimeter length, i.e., a circle [36]. It is
easy to see that the energy cost of flipping one corner of
an octagonally shaped domain, immersed in a sea of
spins with other orientation, is 4J. Once the corner spin
flips, a kink is created which can propagate freely along
the edge, i.e., edges can flip without the energy cost.
Thus, shrinking the octagon involves crossing a number
of energy barriers of E=4J. This implies that such
corner flips should occur regularly on time scales much
longer than r=exp(4J/T) (Refs. [56,57].) For
T=0.97T.=0.43J, 7 is about 10* MCS, so that runs at
least 10° MCS were needed to observe domain coarsen-
ing. (Here it was assumed that the described process is a
necessary process in coarsening [57].) However, almost
97% of 2289 sites of the lattice used in the simulations
were twofold and threefold coordinated. Since the criti-
cal temperature for a one-dimensional chain of Potts
spins is T =0, the transition temperature of this lattice is
much smaller than 7, (Ref. [58]). Our rough estimate of
the transition temperature is [0.51+0.1]7,° (see Fig. 13).
It follows that for TS T,” a characteristic time of coars-
ening 7 is no less than 1.6X 107 MCS, far beyond our
computational capabilities. This and other difficulties re-
lated to the boundary effects and described earlier did not
allow us to verify whether the Gaussian curvature effects
can be simulated by using a standard Potts model on an
octagonal lattice. Obviously, the task would be much
easier if an algorithm could be found that would imple-
ment periodic boundary conditions.

VI. CONCLUSIONS

We have proposed a model for grain coarsening on
curved surfaces and investigated it by using Monte Carlo
simulations. The model is an extension of a Potts model
used in the past to study a variety of grain growth phe-
nomena on flat surfaces [24—-27,31-34]. In contrast to
other, local models of coarsening, the presented model in-
troduced a global field to simulate the dynamic effects
due to the Gaussian curvature of the film.

As predicted by the recent theory of soap-froth kinet-
ics on curved surfaces, we found that the stability proper-
ties of stationary grains are sensitive to the Gaussian cur-
vature of the surface. In particular, it is found that on a
spherical surface, no grain is stable. This is like abnor-
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mal growth (secondary recrystallization) kinetics in pla-
nar systems. In a region of positive curvature, as on the
surface of a sphere or on the outside of a torus, grains
which are much larger than the mean grain size are un-
stable and grow faster than the mean and will engulf the
entire surface section with K >0. In regions of negative
curvature, as on the inside of a torus, all stationary grains
are stable and the final configuration consists of many
grains which have established a stable size, which is a de-
creasing function of |K|. A simple argument suggests
that on the surface of a torus an abnormally large grain
will penetrate the negatively curved regions covering up
to 0.65... of the total surface. These observations are
found to agree with results of experimental studies of the
growth of grains in polycrystalline films on curved sur-
faces.

The usefulness of the suggested model is emphasized
by inherent difficulties in the simulation of grain coarsen-
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ing using a standard Potts model on lattices coresponding
to regular tiling of surfaces with K <0, e.g., pseudo-
sphere. Grain coarsening on an octagonal lattice with
free boundary conditions yields microstructures with a
mean grain size that reaches a constant value at large
times. It is found, however, that the topology of the lat-
tice results in the pinning of all triple vertices despite the
fact that the stable domain shapes do not tile the surface
of the pseudosphere. It is argued that for high enough
temperatures and very long runs the curvature effects
should be observed, if a lattice with periodic boundary
conditions were used in the simulations.
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